Dropout Disagreement: A Recipe for Group
Robustness with Fewer Annotations
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Abstract: We perform last-layer retraining with dropout disagreements to improve
worst-group accuracy with no group annotations and 20x fewer class annotations.
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Problem: Empirical risk minimization gives poor minority group performance

« Datasets often suffer from spurious correlations which are irrelevant for the true label
» Spurious features create minority groups which are underrepresented during training
» Maximize worst-group test accuracy instead of mean over the training distribution (ERM)
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Prior Work: With group annotations, last-layer retraining boosts worst-group accuracy

* Models learn core features, but spurious features are overweighted in last layer [1]
» Last-layer retraining (DFR) on held-out group-balanced dataset is efficient and effective
 However, groups are often unknown ahead of time or are difficult to annotate

Dropout disagreement results on the Waterbirds dataset [6], averaged over 5 random seeds.

m Extra Annotations Test Accuracy

Group Class Worst-Group Train Dist. Mean Test Dist. Mean
ERM 0 0 71.3 97.8 89.5
SSA [9] 0 599 89.0 92.2 -
DFR [1] 599 599 91.8 95.0 94 .4
M-DFR (baseline) 0 599 89.7 02.6 93.7
DD-DFR (ours) 0 48 91.6 94.5 93.8

Our Work: Dropout disagreement matches DFR accuracy without group annotations
* QOriginal and resource-constrained models disagree disproportionately on minority group
 Intuitive: early-stopping has simplicity bias [2, 3], dropout approximates uncertainty metric [4]

* Enables constructing nearly-group-balanced dataset without even knowing the groups
* Only need to request class annotations for disagreements — up to 20x fewer datapoints

Dropout disagreement proportions on the Waterbirds and CelebA datasets [6, 7]. References
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