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Abstract

Weakly supervised object detection (WSOD) enables ob-
ject detectors to be trained using image-level class labels.
However, the practical application of current WSOD mod-
els is limited, as they operate at small scales and require
extensive training and refinement. We propose the Weakly
Supervised Detection Transformer, which enables efficient
knowledge transfer from a large-scale pretraining dataset
to WSOD finetuning on hundreds of novel objects. We lever-
age pretrained knowledge to improve the multiple instance
learning framework used in WSOD, and experiments show
our approach outperforms the state-of-the-art on datasets
with twice the novel classes than previously shown.

1. Introduction

Object detection is a fundamental task in computer vi-
sion where supervised neural networks have demonstrated
remarkable performance [4, 19, 24, 26]. A major factor in
the success of these approaches is the availability of datasets
with fine-grained bounding box annotations [9,11,15,16,18,
28]. However, in comparison to image classification, the an-
notation process for object detection is considerably more
expensive and time-consuming [23]. We consider weakly
supervised object detection (WSOD), which aims to learn
object detectors using only image-level class labels.

Previous WSOD models [2, 29] generate object propos-
als using a low-precision high-recall heuristic [31], then use
multiple instance learning (MIL) [7, 21] to recover high-
likelihood proposals. Another effective strategy leverages
a source dataset with bounding box annotations to trans-
fer semantic (class-aware) [3, 30] or class-agnostic [32, 35]
knowledge to a target dataset of novel objects.

Though the presence of many classes in the source
dataset is posited to be essential for effective transfer [32],
current WSOD methods focus on datasets with few classes
such as VOC and COCO-60 [9, 18]. This has two major
drawbacks which limit the usage of WSOD models in ap-
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Figure 1. WS-DETR is a two-stream approach utilizing a class-
agnostic DETR as proposal generator and a class-aware DETR
for weakly supervised finetuning. The two streams share object
queries. The MIL classifier leverages objectness knowledge from
the pretrained class-agnostic DETR to detect novel objects.

plications. First, knowledge transfer is most effective when
objects in the target dataset have visually similar counter-
parts in the source dataset [35], so training on few classes
may limit the domains where transfer is effective. Second,
current WSOD models perform best with multiple rounds of
training and refinement [29, 35], requiring additional com-
putation and human identification of optimal parameters.

To improve scalability of WSOD, we leverage the
pretraining-finetuning approach which has become stan-
dard in computer vision [5, 12] – specifically, by pretrain-
ing a single detection model on a large-scale, annotated
source dataset with hundreds of classes, and then using this
model for weakly supervised finetuning on novel objects.
Transformer-based methods are particularly well-suited to
this problem: while they lack the inductive bias of CNNs,
they excel at large-scale training and transfer learning for vi-
sion tasks [4,8]. We propose the Weakly Supervised Detec-
tion Transformer (WS-DETR), which integrates DETR [4]
with an MIL architecture for scalable WSOD finetuning on
novel objects (detailed in Figure 1).

2. Weakly Supervised Detection Transformer
Existing MIL architectures [2] are primarily based on a

two-stage RCNN-like [26] structure with region-of-interest
(ROI) pooling performed on proposals and the resultant fea-
tures used for classification; WS-DETR combines the com-
prehensive proposals of this two-stage framework with the



scalability and simplicity of Transformers. Instead of ROI
pooling, we set the WS-DETR object queries to the frozen
class-agnostic queries. Thus, the Transformer decoder at-
tends to the same locations as the class-agnostic model and
the MIL predictions correspond to object proposals.

2.1. DETR Pretraining

We perform fully supervised pretraining on the source
dataset with two models: a class-agnostic DETR trained on
binary object labels serves as the proposal generator, while
a class-aware DETR trained with full labels provides weight
initialization for WSOD. These models extend Deformable
DETR [36] and return N object proposals. In the class-
agnostic model, a two-layer ReLU network returns pro-
posal coordinates {pi}Ni=1 and a fully-connected layer re-
turns classification logits {si}Ni=1 interpreted as objectness
scores. In contrast, the class-aware model has two C-class
fully-connected layers for classification and detection.

2.2. MIL Classifier

The MIL classifier receives the classification logits C ∈
RN×C and detection logits D ∈ RN×C and converts them
to an image-level classification prediction. The classifica-
tion logits are softmaxed over classes, while the detection
logits are softmaxed over detections [2]. Let σ denote the
softmax operation for z ∈ RN : σ(z)i = exp zi∑N

j=1 exp(zj)
.

We define the class-wise and detection-wise softmaxes as
σc
ij(A) = σ((A⊤)j)i and σd

ij(A) = σ(Ai)j where Ai

is the ith row of A. The softmaxed matrices for MIL are
σc(C) and σd(D). These matrices are then multiplied ele-
mentwise and summed over detections to obtain the image-
level MIL predictions ŷj =

∑N
i=1 σ

c
ij(C)σd

ij(D). Finally,
the negative log-likelihood loss is computed between the
MIL predictions and the image-level class labels {yj}Cj=1

as LMIL = − 1
C

∑C
j=1 yj log(ŷj) + (1− yj) log(1− ŷj).

The state-of-the-art method for knowledge transfer from
a pretrained class-agnostic model is the objectness regu-
larization technique of [35], which uses the class-agnostic
objectness scores to regularize the detection branch. Let
S(x) = 1/(1 + e−x) denote the sigmoid operation for x ∈
R, then Lobj = 1

N

∑N
i=1

(
max1≤j≤C S(Dij) − S(si)

)2
.

The model loss is L = LMIL + λLobj for λ > 0. During in-
ference, WS-DETR returns box pi with class prediction and
confidence determined by argmax1≤j≤C σc

ij(C)σd
ij(D).

2.3. Joint Probability Estimation

We show in Section 3.2 that objectness regularization
[35] is insufficient for general WSOD, as it can suffer from
the common MIL weakness of overfitting to distinctive clas-
sification features of novel objects [29]. To rectify this and
better utilize the pretrained DETR, we propose a formula-
tion for the MIL classifier based on the joint object and class

probabilities for each proposal [25]. For a given proposal i,
let ci = max1≤j≤C σc

ij(C) and di = max1≤j≤C S(Dij)
be its maximum classification and detection probabilities.

For a given proposal i, the regularizer Lobj only cares
about the value of di and not whether its position in
the row actually lines up with ci – that is, whether
argmax1≤j≤C σc

ij(C) = argmax1≤j≤C S(Dij). If these
values are mismatched, this failure case would result in low
confidences for every proposal and essentially sort them by
ci, causing overfitting. Indeed, we observe the WS-DETR
confidences using this technique are typically below 0.01.

Instead, the probability of these distinctive features
should be diminished by a low objectness probability as
the model recognizes that the feature does not represent
an entire object. Hence, we compute the joint probabil-
ity P[ith proposal is an object and class j] = σc

ij(C)S(si).
Using normalized probabilities via softmax [2] we obtain
the image-level prediction ŷj =

∑N
i=1 σ

c
ij(C)σ(s)i. This

joint probability technique is mutually exclusive with ob-
jectness regularization [35] and does not utilize Lobj.

2.4. Sparsity in the MIL Classifier

The objectness knowledge present in the pretrained
DETR can also be leveraged to reduce noise during mul-
tiple instance learning – while there are a fixed number of
N proposals, the model typically only detects a few with
high objectness scores. To focus more on these confident
proposals, we propose utilizing sparsity along the detection
dimension of the MIL classifier. While there are many spar-
sity techniques, we choose sparsemax [22] because of its
theoretical justification and successful application in previ-
ous MIL architectures [34] (though not in WSOD).

Applying sparsemax zeros out low-confidence boxes, in-
creasing emphasis on correct classification of likely propos-
als. Specifically, sparsemax returns the Euclidean projec-
tion of a vector z ∈ RN onto the (N − 1)-dimensional
probability simplex ∆N−1 = {p ∈ RN : 1⊤p = 1,p ≥ 0}
as sparsemax(z) = argminp∈∆N−1 ∥p−z∥22. Thus, instead
of σd

ij(D) as in Section 2.2, we substitute sparsemax(Di)j .
Note that we still have ŷi ∈ (0, 1) for all i.

3. Experiments
3.1. FSOD Dataset

Our primary dataset for evaluation is the Few-Shot Ob-
ject Detection (FSOD) dataset [10], designed to test the per-
formance of few-shot learning models on novel objects in a
high-diversity setting. The FSOD dataset comprises 1000
classes, with 800 for training and 200 for testing. This split
is generated such that the test classes have the largest dis-
tance from training classes in a semantic tree, providing a
challenging setting for generalization to novel objects.

In contrast to few-shot learning, WSOD requires a target



Table 1. Class-agnostic performance of Faster R-CNN (used by
[35]) and DETR methods trained on FSOD-800 and evaluated on
each FSOD-200 test split, ignoring classes. We use the codebase
of [35], which does not report precision for this task.

Method mAP AP50 mAR
Zhong et al. [35] − − 50.5± 2.1
Class-Aware DETR 18.4± 1.0 26.9± 0.94 62.3± 3.0
Class-Agnostic DETR 30.6± 1.6 43.0± 1.6 65.5± 3.2

Table 2. WSOD performance on FSOD-200 splits with FSOD-800
pretraining. Our WS-DETR is initialized with class-agnostic pro-
posal generator and class-aware weights. The supervised DETR is
finetuned from the class-aware FSOD-800 checkpoint.

Method mAP AP50 mAR
Zhong et al. [35] 20.6± 0.76 32.7± 2.0 34.4± 0.43
WS-DETR Base 13.9± 1.6 20.0± 1.9 60.1± 2.4
WS-DETR Sparse 28.5± 0.86 38.5± 0.63 68.0± 4.3
WS-DETR Joint 28.6± 0.43 37.8± 0.87 65.3± 1.5
WS-DETR Full 28.6± 0.25 38.2± 1.1 67.4± 3.9

Supervised DETR 47.7± 1.3 64.0± 1.0 76.3± 1.2

dataset of novel objects. Thus, we utilize FSOD-800 as a
source dataset for pretraining and create three random 80/20
train/test splits of FSOD-200 for WSOD. For each metric,
we report the mean and 95% CI based on a t-distribution
with two dof. FSOD-800 has 52,350 images with 147,489
boxes, while the FSOD-200 splits have 11,322 training im-
ages with 28,008 to 28,399 boxes and 2,830 testing im-
ages with 6,703 to 7,094 boxes. This setting has 4× the
source classes and 2× the novel target classes than previous
datasets for WSOD with knowledge transfer [27, 32, 35].

In Table 1, we compare the performance of the class-
agnostic and class-aware DETR vs. the class-agnostic
Faster R-CNN of [35] trained on FSOD-800 and evaluated
on each FSOD-200 test split. For the class-aware DETR,
we evaluate the boxes only. Both DETR variants outper-
form the Faster R-CNN and the class-agnostic DETR has
much better precision. We show in Section 3.4 that this
precision improvement translates to superior WSOD per-
formance, justifying pretraining a class-agnostic model.

We introduce short names for each permutation of WS-
DETR with our techniques from Sections 2.3 and 2.4.
“Base” refers to our model with the objectness regulariza-
tion of [35]; “Sparse” refers to “Base” with added sparsity;
“Joint” refers to “Base” with joint probability estimation
only; and “Full” refers to “Joint” with added sparsity.

In Table 2, we detail the performance of our model on
each FSOD-200 split against the state-of-the-art WSOD
knowledge transfer baseline of [35] and a supervised DETR
upper bound. The addition of either our joint probability
technique or sparsity boosts mAP by 14.7 points over WS-
DETR Base, achieving a new state-of-the-art performance
by 8 mAP. While the method of [35] loses 15 mAR during

(a) WS-DETR Base (b) WS-DETR Joint

Figure 2. Visualization of how our WS-DETR joint probability
technique prevents overfitting to distinctive classification features
on the FGVC-Aircraft dataset. The plotted bounding box is the
highest confidence detection in the image.

Table 3. WSOD performance on the FGVC-Aircraft dataset with
FSOD-800 pretraining. The WS-DETRs using our joint probabil-
ity technique achieve near-supervised level performance, while the
objectness regularization methods underperform due to overfitting
to distinctive classification features.

Method mAP AP50 mAR
Zhong et al. [35] 14.8 28.7 30.5
WS-DETR Base 5.2 8.5 63.4
WS-DETR Sparse 50.6 57.4 93.2
WS-DETR Joint 77.7 83.6 93.4
WS-DETR Full 79.1 85.0 94.2

Supervised DETR 87.1 88.7 97.9

weakly supervised training, our WS-DETR approach gains
2.5 mAR relative to the class-agnostic pretrained model.

3.2. FGVC-Aircraft Dataset

The FGVC-Aircraft dataset [20] comprises 10,000 im-
ages of 100 types of aircraft whose visual characteristics
may differ only slightly between classes. It poses a simpler
detection problem, as the target objects are large and cen-
tered. And, since “airplane” is a FSOD-800 source class,
we expect WSOD models to perform well on this task. We
show our joint probability formulation achieves this out-
come, while the objectness regularization technique utilized
in previous work [35] limits detection performance. In par-
ticular, previous models overfit to distinctive classification
features which are highly localized in fine-grained datasets,
a weakness observed by [29] and whose remedy has been
the subject of several WSOD studies [14,29,33]. These so-
lutions typically involve multiple rounds of box refinement
via self-training. In contrast, our method leverages the ob-
jectness knowledge from the pretrained model to identify
the correct proposal without any extra computation.

In Figure 2, we visualize how our joint probability esti-
mation technique properly bounds the entire aircraft, while
objectness regularization [35] overfits to distinctive fea-
tures. In Table 3, we display the mAP, AP50, and mAR of
each model on the FGVC-Aircraft test set and demonstrate
that our model achieves near-supervised level performance.



Table 4. WSOD performance on the iNaturalist 2017 dataset with
FSOD-800 pretraining. Our WS-DETR is initialized with class-
agnostic proposal generator and class-aware weights. The super-
vised DETR upper bound is finetuned from the same class-aware
FSOD-800 checkpoint. The method of Zhong et al. [35] did not
converge for the subclasses task.

Method 13 Superclasses 2,854 Subclasses
mAP AP50 mAP AP50

Zhong et al. [35] 44.1 76.7 − −
WS-DETR Base 0.2 0.4 1.7 3.7
WS-DETR Sparse 61.1 79.3 30.4 38.2
WS-DETR Joint 54.8 70.0 22.1 29.8
WS-DETR Full 60.7 78.7 35.4 43.5

Supervised DETR 79.2 93.6 51.5 58.8

Table 5. WSOD performance on each FSOD-200 split with
FSOD-800 pretraining. We utilize our joint probability technique
and no sparsity. The class-aware DETR is pretrained on FSOD-
800 with its full 800 classes, while the class-agnostic DETR is
pretrained with only binary object labels.

Proposal Generator Weights Init. mAP AP50
Aware Agnostic 18.0± 1.1 24.3± 1.4
Aware Aware 22.1± 1.7 29.7± 2.3

Agnostic Agnostic 27.0± 1.0 35.8± 1.7
Agnostic Aware 28.6± 0.43 37.8± 0.87

3.3. iNaturalist Dataset

An application for WSOD not captured by current set-
tings is datasets with many classes which require domain-
specific knowledge to label. One exemplar is the iNaturalist
2017 dataset [13], a fine-grained species dataset of 500K
boxes and 5,000 classes, 2,854 of which have detection an-
notations. Van Horn et al. [13] remark that the bounding
box labeling was difficult since only an expert can distin-
guish all the species; WSOD is a very practical alternative.

In Table 4, we detail the performance of WS-DETR
against the state-of-the-art model [35] on the 13 super-
classes and 2,854 subclasses in the dataset. The addition
of sparsity to our joint probability technique improves re-
sults by up to 13.3 mAP. WS-DETR outperforms the state-
of-the-art on the superclasses by 17 mAP, significantly im-
proving high-precision WSOD. While the method of Zhong
et al. [35] did not converge on the subclasses, WS-DETR
achieves 75% of supervised performance.

3.4. Ablation Study

In our above experiments, we used a class-agnostic
pretrained DETR as the proposal generator and a class-
aware pretrained DETR for initialization for WSOD. We
can instead initialize with the class-agnostic DETR to halve
needed pretraining. In Table 5, we show that the WS-DETR
trained with class-agnostic proposal generator and weights
initialization only loses 1.6 mAP and 2 AP50 compared to

Figure 3. Scaling study of FSOD-800 pretrained WS-DETR Full
with FSOD-200 WSOD. We test pretraining with a percentage of
images vs. a percentage of classes, then perform WSOD training
and evaluate on our held-out test set. This shows pretraining class
quantity contributes more to performance than image quantity.

the best model; this suggests the class-agnostic model can
learn most necessary features during WSOD finetuning.

We perform a scaling study on FSOD-800 pretraining
with WS-DETR Full and find that class quantity contributes
more to downstream WSOD performance than image quan-
tity (see Figure 3). Group 1, the solid lines in the figure, are
a random split of FSOD-800 with all classes represented.
Group 2, the dashed lines in the figure, have the same num-
ber of images as Group 1 but with that same proportion of
classes. This experimental setup isolates the effect of in-
creased pretraining classes with the same number of total
images. We take 3 random splits of FSOD-800 at each per-
centage level for each group and finetune on the 3 splits of
FSOD-200. We report the mean and 95% CI with respect to
a t-distribution with 8 dof. This is the first rigorous testing
and proof of the hypothesis of Uijlings et al. [32] that class
quantity is more important than image quantity for WSOD
pretraining, and it justifies our usage of FSOD-800 in place
of a larger dataset with less classes such as COCO [18].
The lowest proportion of classes we test (160 classes) is still
nearly 3× that of COCO-60 [17, 18]; the performance gap
at this level suggests that standard datasets used for WSOD
pretraining are an order of magnitude too small.

4. Conclusion
We propose Weakly Supervised Detection Transformer

(WS-DETR), which integrates DETR with an MIL archi-
tecture for WSOD on novel objects. Our model leverages
the strengths of both two-stage detectors and the end-to-end
DETR framework. In comparison to existing WSOD ap-
proaches, which operate at small scales and require multiple
rounds of training and refinement, our WS-DETR method
utilizes a single pretrained model for knowledge transfer to
WSOD finetuning in a variety of practical domains.
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Table 6. FSOD-800 pretrained WS-DETR performance when
freezing or unfreezing the classification layer of the class-agnostic
DETR during WSOD finetuning. Freezing this layer gives bet-
ter objectness transfer, implying that pretraining enables the class-
agnostic DETR to learn a transferable representation of objectness.

(a) FSOD-200

Method Obj. Frozen mAP AP50
WS-DETR Joint ✗ 28.6± 0.43 37.8± 0.87
WS-DETR Joint ✓ 26.3± 0.57 35.0± 0.5
WS-DETR Full ✗ 28.6± 0.25 38.2± 1.1
WS-DETR Full ✓ 26.2± 0.7 34.4± 0.9

(b) FGVC-Aircraft

Method Obj. Frozen mAP AP50
WS-DETR Joint ✗ 73.7 83.6
WS-DETR Joint ✓ 79.1 84.2
WS-DETR Full ✗ 79.1 85.0
WS-DETR Full ✓ 78.7 83.3

(c) iNaturalist Superclasses

Method Obj. Frozen mAP AP50
WS-DETR Joint ✗ 54.8 70.0
WS-DETR Joint ✓ 54.1 70.9
WS-DETR Full ✗ 60.7 78.7
WS-DETR Full ✓ 42.5 54.8

A. Finetuning Objectness Layer

A reasonable question is whether finetuning the classifi-
cation layer in the class-agnostic DETR leads to increased
performance – perhaps the model can use the target dataset
to refine its understanding of objectness for a new domain.
However, our experiments show this is not the case; as de-
tailed in Table 6, unfreezing the objectness layer decreases
mAP in five out of six experiments. This is evidence that
that pretraining enables the class-agnostic DETR to learn a
transferable representation of objectness.

B. COCO-60 to PASCAL VOC Performance

Though the presence of many classes in the source
dataset is posited to be essential for effective transfer [32],
previous WSOD methods are typically designed for and
trained on datasets with few classes and smaller image
sets. A widely-used setting for testing WSOD is PASCAL
VOC [9] (20 classes), where knowledge transfer methods
use COCO-60 [17, 18] (60 classes) for pretraining, with no
class overlap between the 20 and 60 classes.

As we have shown in the main body of our paper, the use
of COCO-60/VOC has two major drawbacks which limit
the usage of previous WSOD models in practice. Yet, for
completeness we have tested our method on this commonly
used test case and show the results in Table 7. Our best per-
forming approach is below the leading method by Zhong
et al. [35]. Recall that in the main body of the paper, we
show that our method outperforms Zhong et al.’s [35] for di-
verse datasets with hundreds of novel objects such as FSOD

Table 7. WSOD performance on PASCAL VOC 2007 with
COCO-60 pretraining. The supervised DETR is finetuned from
the same COCO-60 checkpoint. The result of Zhong et al. [35]
includes pseudo ground truth mining.

Method mAP AP50 mAR
WSDDN [2] 34.8
CASD [14] 56.8
Zhong et al. [35] 59.7
WS-DETR Base 18.2 28.4 58.4
WS-DETR Sparse 24.2 36.5 57.7
WS-DETR Joint 23.4 33.8 58.4
WS-DETR Full 23.6 34.2 57.6
Supervised DETR 55.3 77.3 72.7

and fine-grained datasets such as iNaturalist and FGVC-
Aircraft. We believe this inconsistency in the success of
methods between using COCO-60/VOC and FSOD illus-
trates the benefits of our method, which is the ability to
leverage large-scale, diverse pretraining (with FSOD) for
weakly supervised detection on large, complex datasets that
are common in real-world scenarios. Our results suggest
this benefit is due to the scalability of our Detection Trans-
former model and our novel knowledge transfer method of
finetuning an end-to-end detection model instead of a clas-
sification model such as ResNet [12, 35]; however, there is
a trade-off as Transformer-based methods are known to re-
quire much more data. Previous methods work well for the
small-scale COCO-60/VOC case but don’t handle the large
and complex ones well, which we believe are more com-
mon in real-world applications. We believe this shows that
it is time for WSOD research to move beyond what appears
to be an over-optimization to COCO-60/VOC, which is not
a useful analogue for real-world datasets, and address the
large, complex datasets that we introduce with our work.

C. Implementation Details

Our WS-DETR has roughly 40 million parameters. We
use N = 300 proposals, the default for Deformable DETR.
DETR pretraining is conducted using default hyperparam-
eters and the AdamW optimizer. We utilize a Deformable
DETR [36] with a ResNet50 backbone [12] initialized from
the DETReg [1] ImageNet100 [6] checkpoint. We train
DETR on FSOD-800 for 50 epochs at a batch size of 16,
dropping the learning rate (lr) by a factor of 10 at epoch
40. For WSOD finetuning, the lr is 2× 10−5 for the DETR
backbone and input projection, 3 × 10−4 for other DETR
parameters including the Transformer, and 1× 10−3 for the
MIL classifier. The weight decay is 1× 10−4 and we use a
dropout rate of 0.1. We perform WSOD training on FSOD-
200 and FGVC-Aircraft for 30 epochs, dropping the lr after
15 epochs. On iNaturalist, we train with a batch size of 32
for 10 epochs, dropping the lr after 8 epochs. DETR pre-



training was performed on 8 V100 GPUs, WSOD training
was performed on 4 V100 GPUs, and iNaturalist training
was performed on a DGX-2 machine with 16 V100 GPUs;
all V100s come in the 32GB configuration.

For the comparisons with Zhong et al. [35], we use
the publicly available implementation developed by the au-
thors. We use the default hyperparameters of β = 5.0
and λ = 0.2 and the SGD optimizer. We train the class-
agnostic model on FSOD-800 with a batch size of 4 and
lr of 4 × 10−3 for 70K steps, dropping the lr by 10 af-
ter 48K steps. We perform WSOD training on FSOD-200
for 10K steps, dropping the lr after 7K steps. For FGVC-
Aircraft, we train for 6K steps and drop the lr after 4K steps.
On iNaturalist, we train with a batch size of 32 and lr of
8× 10−3 for 10K steps, dropping the lr after 7K steps.

We observed that the magnitude of objectness regulariza-
tion in our WS-DETR was much smaller than in [35], and a
hyperparameter search established λ = 1000 as the best de-
fault for our architecture. This may suggest that minimizing
the regularization term is trivial for a highly overparameter-
ized Transformer architecture. To isolate the performance
impact of our WS-DETR method, we do not implement
false negative mining.
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