On the Unreasonable Effectiveness of Last-layer Retraining
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Abstract: The success of last-layer retraining (LLR) methods is determined by their ability
to perform explicit (DFR) or implicit (CB-LLR/AFR) group balancing on the held-out set.
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Question: How do LLR methods achieve high WGA without group annotations?
e ERM overfits to spurious correlations, harming minority group accuracy
e LLR onagroup-balanced held-out set (DFR) is an effective solution to this problem
e Surprisingly, LLR can achieve similar success without group labels [1, 2]
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Hypothesis: Neural collapse (NC) and gradient descent (GD) implicit bias explain LLR

e |ldea 1: NC occurs during training, causing ERM classifier to be dominated by the majority groups [ 3]

e Idea 2: Implicit bias of GD elicits a max-margin classifier on the held-out features during LLR [4, 5

e Hypothesis: LLR avoids neural collapse (NC) through the held-out set, leading to the implicit bias of
gradient descent (GD) benefitting robustness
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Our Work: AFR and CB-LLR succeed primarily via implicit group-balancing
e Our empirical investigation does not support our hypothesis
e NC and GD implicit bias occur too slowly to play a significant role during normal training
e Instead, success of AFR[2] and CB-LLR [1] explained by better group balance in the held-out set
e LLR only improves over ERM when the held-out set is more balanced than the training set

A ERM —— LLR Group Ratio 0.05 LLR Group Ratio 0.1 —— LLR Group Ratio 0.2 —— LLR Group Ratio 0.5 —— LLR Group Ratio 1.0
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